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Note 

Weak Decay Processes in Lattice QCD” 

I. INTRODUCTION 

Many interesting phenomenological questions in weak interaction physics require 
the understanding of QCD corrections before an accurate comparison of theory to 
experiment is possible. While the basic theory describes pointlike interactions of 
quarks and weak gauge bosons, real world experiments provide us with data on the 
weak decays of confined multiquark bound states Extraction of the 
phenomenological implications of the theory requires that one take into account 
hadron wavefunctions and binding effects. If QCD is the correct theory then it 
should be able to account for such effects. 

In principle, the lattice formulation of QCD provides the theorist with a too! for 
performing finite nonperturbative calculations of strong interaction effects 
However, actual lattice QCD calculations can range from small (a few hundred 
VAX hours) to prohibitively expensive (a few “‘Cray millenia” [I 1) in com- 
putational resources. One of the arts of the field is to find interesting work that can 
be done with current state of the art computer technology. 

One area of great interest to many workers is the detailed comparison of QCD 
predictions for hadron mass spectra with experiment. This work requires highly 
accurate determinations of the masses in QCD and serves both as a test of QCD 
and its lattice formulation. Success in this effort means the accurate determination 
of hadron masses given only ,40cD and quark masses as input. The principle dif- 
ficulty that must be addressed in this work is the calculation of the effects of closed 
fermion loops. The inclusion of fermion loops requires computer time which grows 
like the square of the number of lattice sites--a gigantic computational effort. 

In this paper, we consider a second area in which it is important and feasible to 
make progress with current and forthcoming computer technology: the calcuiation 
of matrix elements of weak currents between hadronic states. Accurate calculations 
of weak matrix elements will allow more precise testing of the Standard Model than 
has hitherto been possible. Precise testing of the Standard Model’s implications for 
low-energy phenomena such as decay rates and mixing angles is one route to the 
verification of our understanding of weak physics and of the ronstraints 
phenomonology places on higher level unified theories. 

The basic facts which make for this situation are: 

* Given as a lecture in the 1986 TM1 in Elementary Particle Physics, at the University of Californie. 
San?a Cruz, CA 95064. 
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-There are weak amplitudes for which QCD effects lead to factors of 2-10 
uncertainty. These include the AZ= $ rule [2], the pi?’ mass splitting, proton 
decay in GUTS, CP violation, and the KM mixing matrix for heavy quarks. 
Accurate determination of these QCD effects can provide information important in 
testing the Standard Model and its extensions. 

-Recent theoretical work by Bochicchio et al. [3] on the nature of chiral 
symmetry restoration and current algebra in the continuum limit of lattice theory 
with quenched Wilson fermions has eased the potential task of data analysis. 

-There are techniques, such as the use of “extended source propagators” to 
compute propagator convolutions for processes involving spectator quarks, which 
allow for expeditious computation of matrix elements including momentum depen- 
dent effects as an adjustable parameter. 

We describe a program of calculations which use quenched Wilson fermions and 
effectively local four-fermi weak interaction vertices. Our focus is on processes 
which require no further approximations for their analysis. In particular, we will 
not assume a priori PCAC or integrate out heavy quark fields. Quenching is not 
fundamental to our considerations except insofar as it saves computer time. Given a 
sample of thermalized lattices including fermion loop effects, one could apply all the 
same techniques of analysis. 

II. WEAR MATRIX ELEMENTS 

On lattices with lattice spacings a-* on the order of 1 GeV, the propagation of 
heavy weak bosons can be handled using perturbative renormalization theory to 
take into account interactions on distance scales from the lattice spacing a down to 
the weak interaction scale l/M,. The weak processes are described by matrix 
elements of local currents and current bilinears (four-fermi interactions). 

There is a natural hierarchy of processes that can be calculated. It is convenient 
to classify them by the number of hadrons involved in the matrix element. 

Leptorzic Decays 

Purely leptonic decays of mesons depend on matrix elements of the form: 
(01 J@(O) 144, p), where P(x) is one of the weak vector or axial vector currents and 
IA4, p) represents a meson state of momentum p. The state IM, p) can be created 
by a quark-antiquark operator. For example, a zero momentum meson decay 
matrix element would be represented in configuration space by the quantity 
(Fig. la) 

M,(T)=C (01 qx;-7-J z-Y(x;-T)J,(O) IO), (1) 
x 

where r gives the appropriate flavor spin combination and the sum over spatial 
positions guarantees p = 0. (See Fig. la.) The amplitude M,(T) must be averaged 
over gauge field configurations. Processes of this class have been studied by several 
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FIG. 1. Class 1 diagrams: (a) meson decay, lb) meson mixing (J?p, for example ). 

groups, notably by Maiani and Martinelli [4] in the context of their lattice current 
algebra work [3]. 

The calculation of the above matrix element for any combination of weak 
currents and r requires knowledge of the Dirac propagator from the origin to each 
point in the space-time lattice. To quantify the calculation efforts of these problems, 
it is convenient to refer to the number of “inversions” in finding solutions to a 
hnear system of the form: 

where 9i0,jb(x, x’) is the lattice Dirac operator for a single Wilson fermion flavor, 
and j,,(x’) is a source with spin index j and color index h. One such inversion 
corresponds to a single Gauss-Seidel or conjugate-gradient operation. Calculation 
of the whole propagator from the origin (Dia.jb(~~~ 0)=9&Jx, 0)) requires 22 
inversions, one for each possible flavor-spin delta source j,(.u’) = 6j,j,6,,,,d(x’). The 
calculations of these leptonic decays can be done as a by-product of the quenched 
mass calculations since the inverse data required is the same. 

The extraction of the contribution of the desired meson state 111f, 0) can be done 
by fitting the T dependence of the gauge averaged M,(T) to the appropriate sum of 
exponentials’ 

where the sum is over all possible intermediate states cz with the right quantum 
numbers. 

Normalized current matrix elements require wavefunction normalization 
constants (01 PPP ICC) which can be extracted (somewhat less reliably) from the fit 
to the T dependence of the meson propagator itself. It is interesting to note that 
relative matrix elements involving the lowest mass state in a given color-spin 
channel can be estimated simply by measuring masses and the above matrix 
elements for a single sufficiently large T. 

The one hadron processes described here require the same number of inversions 
as the mass determination. Another group of processes which are also of this order 
of difficulty are those with internal weak interactions and no momentum transfer 
(see Fig. lb). Typically these processes involve further theoretical approximations 
to be cast in the local form. Examples are: 

’ The contribution of spurious time wrapped states has been omitted for convenience of exposir:on. 
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FIG. 2. K”P mixing “local” kernel. 

1. The dZ= + rule matrix elements after PCAC has been invoked to remove 
one of the two z’s in K-+ z7c. The effect here is very large, but the theoretical 
situation is complicated by operator mixing, the accuracy of PCAC, and the impor- 
tant contribution of the “eye” graph or nonlocal penguin graph. 

3 The PZ??’ mass splitting using a local effective Hamiltonian approximation. 
Herey’the local “blob” in Fig. (lb) is the effective Hamiltonian which involves the 
exchange of a pair of W’s and the integration over c, ~1, and t quarks (Fig. 2). 

Semi-leptonic DecaJ,s 

Semi-leptonic decays and form-factors of mesons and baryons are two hadron 
processes. Proton decay also falls in this class. (See Fig. 3.) The essential ingredient 
which distinguishes these processes is that there are one or more “spectator” quarks 
which propagate between the initial and final points without touching the inter- 
action vertex. 

For example, the diagram (Fig. 3a) for the semi-leptonic decay of a meson has 
the form of the following convolution of propagators: 

(4) 

FIG. 3. Scmileptonic decay graphs: (a) meson, (b) baryon, (c) proton decay 
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where, !PV’s are the meson spin wavefunctions and Jz are the spin matrix elements 
of the weak current M. The propagators D’, D’, -and II’ are Wilson fermion 
propagators of (possibly) different flavors. As before, the sum over spatial positions 
of the initial meson state (with $’ = -T) projects out the p = 0 component. ‘r;Ve 
have taken the weak vertex to be at the origin. 

The amplitude requires knowledge both of the propagator from the origin to 
elsewhere in space and the propagator for the spectator quark directly from the 
initial to the final state. It might then appear that one needs many more 
inversions--a whole time plane full (1X3) to perform a full convolution over x:. 
Fortunately, this can be avoided by using the “extended source propagator” 
(ESP) technique [IS]. This amounts to the observation that for each color-spin 
component Ib, the convolution: 

is the solution of 

The right-hand side of this equation is the “extended source.” Calculation of .9 
requires 12 inversions (like a propagator) and amounts to doing the convolution 
before the inversion. 

With this trick, only 3 x 12 = 36 inversions per initial spin state are needed even 
in the worst case of different mass quarks on ail three legs of the diagram. 

The resuit of this work is a calculation of the amplitude Cy connecting a p =O 
meson state of definite spin created at time -T to a weak decay vertex at .Y = 0 
with observation of the final state q4 pair at any point s,. in space-time. This data 
allows for momentum and energy analysis on the final state. In order to extract the 
contribution of a pure initial state meson, the calculation must be repeated for a 
variety of T values or, with less reliability, the lowest state in the p = 0 channel may 
be assumed to dominate. 

A similar method will work for the baryonic diagrams (Figs. 3b and 3~). In these 
cases, the sources are constructed from di-quarks and the baryonic spin 
wavefunction. There are also more spin-flavor combinations to be considered. 

Tnw-body Hadrorlic Decays 

Two-body hadronic decays involve three hadron matrix elements. These include 
nonleptonic decays. The diagrams of interest involve spectators which can be 
treated by the extended source propagator method described above. Additionally. 
these processes can involve spectators (Figs. 4a and 5) andior exchange and 
annihilation (Fig. 4b) channels. Also the “eye“ graphs (.Fig. 6) of the K-t TX 
amplitude, which is of interest for AI = +, falls into this class when the assumption 
of PCAC is not used. 
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FIG. 4. Nonleptonic two-body decay graphs: (a) spectator, (b) exchange and annihilation. 

Typical processes in this class usually involve more inversions than class 2, but 
they are also approachable with a single extended source propagator for one of the 
external hadrons. In addition, these processes require extraction of hadronic states 
on all three legs. Therefore, they are expected to have larger errors from finite size 
effects and from statistics. Nonetheless, for specific channels either the number of 
inversions can be comparable to the semileptonic decays, or the experimental 
results better determined such that the purely hadronic channel is preferable. Much 
detailed phenomenology remains to be done to clearly identify the best channels. 
The totality of a computationally feasible decay channel is somewhat daunting. 

III. COMPUTATIONAL CONSIDERATIONS 

The computational environment needed to begin the program of computations 
described in this paper is one equivalent to a state of the art vector supercomputer, 
e.g., the CDC CYBER 205. As described, the program starts by performing 
calculations of difficulty comparable to that of the quenched mass spectrum. Since 
many inversions can be used for a variety of processes and matrix elements, there is 
considerable potential for re-use of the inverse data. 

Our work is to be done using time-doubled versions of existing thermalized 
163x 32 lattices of Moriarty, Rebbi, and Samuel. We expect that times of order 
500-1000 CYBER 205 h will allow a significant impact in these areas. 

FIG. 5. Spectator graph for D+ -+ I&c+. 
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FIG. 6, Eye graphs for K-+ I[?[: (a) class 3 graph, (b) PCAC approximation (class 2’1. 
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